Tagging heavy flavours with boosted decision trees

نویسنده

  • J. Bastos
چکیده

This paper evaluates the performance of boosted decision trees for tagging b-jets. It is shown, using a Monte Carlo simulation of WH → lνqq̄ events that boosted decision trees outperform feed-forward neural networks. The results show that for a b-tagging efficiency of 90% the b-jet purity given by boosted decision trees is almost 20% higher than that given by neural networks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multivariate approach to heavy flavour tagging with cascade training

This paper compares the performance of artificial neural networks and boosted decision trees, with and without cascade training, for tagging b-jets in a collider experiment. It is shown, using a Monte Carlo simulation of WH → lνqq̄ events, that boosted decision trees outperform artificial neural networks. Furthermore, cascade training can substantially improve the performance of both boosted dec...

متن کامل

Credit scoring with boosted decision trees

The enormous growth experienced by the credit industry has led researchers to develop sophisticated credit scoring models that help lenders decide whether to grant or reject credit to applicants. This paper proposes a credit scoring model based on boosted decision trees, a powerful learning technique that aggregates several decision trees to form a classifier given by a weighted majority vote o...

متن کامل

Machine Learning Algorithms for b-Jet Tagging at the ATLAS Experiment

The separation of b-quark initiated jets from those coming from lighter quark flavors (b-tagging) is a fundamental tool for the ATLAS physics program at the CERN Large Hadron Collider. The most powerful b-tagging algorithms combine information from low-level taggers, exploiting reconstructed track and vertex information, into machine learning classifiers. The potential of modern deep learning t...

متن کامل

Optimization with Gradient-Boosted Trees and Risk Control

Decision trees effectively represent the sparse, high dimensional and noisy nature of chemical data from experiments. Having learned a function from this data, we may want to thereafter optimize the function, e.g., picking the best chemical process catalyst. In this way, we may repurpose legacy predictive models. This work studies a large-scale, industrially-relevant mixed-integer quadratic opt...

متن کامل

An Empirical Comparison of Supervised Learning Algorithms Using Different Performance Metrics

We present results from a large-scale empirical comparison between ten learning methods: SVMs, neural nets, logistic regression, naive bayes, memory-based learning, random forests, decision trees, bagged trees, boosted trees, and boosted stumps. We evaluate the methods on binary classification problems using nine performance criteria: accuracy, squared error, cross-entropy, ROC Area, F-score, p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007